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Abstract

This paper presents a projection algorithm for in-
cremental control rule synthesis. The algorithm
synthesizes an initial set of goal-achieving control
rules using a combination of situation probability
and estimated remaining work as a search heuris-
tic. This set of control rules has a certain probabil-

ity of satisfying the given goal. The probability is
incrementally increased by synthesizing additional
control rules to handle "error" situations the exe-

cution system is likely to encounter when following
the initial control rules. By using situation prob-
abilities the algorithm achieves a computationally
effective balance between the limited robustness

of triangle tables and the absolute robustness of
universal plans.

Introduction

We are interested in a continuum of plan-guided sys-
tems, from those that can operate entirely off-line,
where complete plans are produced in advance and
later used by independently competent execution sys-
tems, to those systems that are embedded in the situ-
ations for which their plans are generated. These em-
bedded systems are especially interesting since they
must close the loop between plan formation and plan
execution in their environment. For an embedded sys-

tem, simply generating a plan is not enough; such a
system must instead incrementally coerce its environ-
ment to conform with its goals. The key tasks for
an embedded system are resource-bounded incremental
plan synthesis and reactive behavior using appropriate
plans in a closed-loop fashion.

The work presented in this paper extends existing
theory in the areas of temporal projection, anytime al-
gorithms, and plan synthesis for embedded systems.
The goals of this paper are to: 1) define the syntax

tThis work has been partially supported by the Artificial
Intelligence Research Program of the Air Force Office of
Scientific Research.

false afrdiated with the Computer Science Department
at Rutgers University.

and semantics of behavioral constraintsand provide

a search heuristicfor theirsatisfaction;2) definethe

probabilityofbehavioralconstraintsatisfaction;3) de-
scribea synthetictemporal projectionalgorithm with

anytime propertieswhich heuristicallymaximizes the

probabilityofbehavioralconstraintsatisfaction.

The next sectionprovidesrelevantbackground infor-

mation. The synthetictemporal projectionalgorithm

isthen presented by way of a simple example. The
paper concludeswith a discussionofconnectionstore-
latedresearch.

Background

Realistic planning and control problems suggest the
need for temporally extended goals of maintenance
and prevention, in addition to the traditional plan-
ning goals of achieveraenL Our approach employs a
language of behavioral constraints which is based on a
branching temporal logic (of Drummond, 1989). As an
example, consider the following behavioral constraint,
or BC.

(and
(prevent (and (drunk driver)

(has-car-keys driver) )
7 12)

(acb.teve (or (at-ho=e me)
(have-companlon me))

:ri))

This BC representsa conjunction of two temporally

extended goals:the firstgoal must be falsefrom time

7 through time 12 and the second goal must be true
at some arbitrarytime in the future.Behavioralcon-

stralntsemantics are defined in terms of possiblebe-
haviorsthat are synthesizedby our temporal projec-

tionalgorithm.Intuitively,we say that a given projec-
tion path tosatisfiesa behavioralconstraint/_ifand

only ifallofthe formulas inj5are trueintoover the re-

quiredtime intervals.See appendix A formore details
on BC syntax and semantics.

We define a behavioral constraint strategy (or BC

strategy) to be a partial order over a set of behav-
ioral constraints. The partial order, denoted by "-<",



indicates both execution and problem solving prece-
dence. Behavioral constraint strategies for a given be-
havioral constraint are produced using domain- and
problem-specific planning expertise. The BC strategy
constructed for a given BC indicates a set of subprob-
lems for the projector to satisfy and an order in which
to satisfy them. This process is beyond the scope of
this paper; please refer to Bresina and Drummond
(1990) for more information. The way in which BC
strategies are used by the projector is made clear in
the next section.

In order to project future possible courses of action
our projector needs a causal theory for each domain of
application. A causal theory is a set of operators which
defines both the actions that the system can take and
the exogenous events that can occur in the applica-
tion environment. The difference between actions and

events is simply this: actions can be chosen for exe-
cution by the control system under construction (e.g.,

move in a direction) while the occurrence of events is
determined by the system's environment (e.g., a gust
of wind). Prom the perspective of the projector how-
ever, actions and events are similar, and both can be
characterized as a situation to situation transition.

The projector explores various possible futures by re-
peatedly finding enabled operators and applying them
to produce new hypothetical situations. The projector
creates a directed acyclic graph, where each node de-
notes a domain situation and each arc is labelled with

a domain operator. Projection associates a duration
with each operator application and uses this to calcu-
late a time stamp for the resulting situation.

A path in a projection graph denotes a future pos-
sible behavior. Projection paths which satisfy a given
behavioral constraint are compiled into a set of Situ-

ated Control Rules (SCI_) similar to the way that a
STRIPS plan is transformed into a triangle table (Fikes

et al., 1972). The SCRs indicate to the reaction com-
ponent those actions which will "lead to" the eventual
satisfaction of its current behavioral constraint. SCRs

are used by the reaction component as a set of local
instructions constituting a control program.

See Bresina and Drummond (1990) and Drummond
(1989) for more details about our overall architecture.
The algorithm described in this paper does not crit-
ically depend on the architecture, so many irrelevant
details have been suppressed. Our temporal projec-
tion algorithm can be used by a variety of systems, in
a range of architectures.

The Projection Algorithm

This section presents our anytime synthetic projection

algorithm. We start with a description of the algo-
rithm in operation and then present ways to control
the search that is inherent in this approach.

The project algorithm accepts a behavioral con-
straint and domain causal theory; it attempts to max-
imlze the probability that the reaction component will

satisfy the behavioral constraint. Our algorithm is
based on the heuristic search paradigm which makes

it hard to guarantee that the actual mazimum proba-
bility will be found. Instead, as is typically done with
heuristic search algorithms, we claim only that our al-
gorithm attempts to maximize the probability of goal
satisfaction, which we refer to as heuristic mazimiza-
tion.

To simplify the presentation we characterize the pro-
jector's causal theory as a single function called tran-
sition. The function transition (s) maps a situation
description s to a set of triples < si,pi, ol > such that

p (si Is, oi) = Pi, where the conditional probability ex-
pression has the following interpretation. If oi denotes
an action, then p_ is the probability that si will be the
resulting situation if oi is executed in situation s. If
oi denotes an event, then Pi is the probability that si
will be the resulting situation if oi occurs in situation
s. For a given s, we assume that the possible transi-
tions are mutually exclusive. Notice that this defini-
tion of transition(s) makes the Markov assumption by
ignoring the particular sequence of operators used to
produce s. It is difficult to achieve a complete specifi-
cation of all possible situation transitions in a realistic
domain, and the automatic incremental improvement
of the transition function specification is part of our
future research agenda.

See figure 1 for an abstract projection graph exam-
ple. The behavioral constraint strategy ft -< /32 has
been selected as an appropriate way to satisfy f. This
BC strategy indicates that a path which satisfies fix
composed with a path which satisfies f2 will consti-
tute a path which satisfies f.

Projec_ first calls traverse to find a single path that
satisfies fix "_f2 from its "current" situation, sl. Tra-
verse uses the function transition to create situations

reachable under the application of a single operator
from sx. Not all possible transitions are considered: a
filter is used to select a subset of the most probable

transitions, and only these are used to produce new
successors to sl. In our example only s2 survives the
probability filter. The number of survivors under this
winnowing operation is determined by a filter-width
parameter, corresponding to the filter selection func-
tion in Ow and Morton's (1986) filtered beam search.

A heuristic value is calculated for each successor sit-
uation based on the situation's probability and an esti-
mate of the remaining work required to satisfy fx from
that situation. (This estimation function is explained
in more detail below.) Another winnowing process is
used to select a subset of these situations that have

the highest heuristic value. For our example, this set
contains only s2. In general, however, this set will con-
rain a subset of all possible frontier search nodes in the
developing projection graph. The number of elements
in this set is limited by a beam-width parameter, cor-
responding to Ow and Morton's (1986) beam selection
function. This set of frontier nodes is passed on to a
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Figure 1: A Simple Projection Graph Example

recursive call of traverse.

T_averse continues to extend projection paths by se-
lecting possible transitions until it finds a path which
satisfies/3z. In the figure, the first satisfactory path
discoveredis8zoze20283o3s4. Situated Control Rules

axe now compiled foreach situationin thispath. The

reactioncomponent willthus be given a set ofrulesof

the form: IF si AND _1 THEN O_,fori ----I,2,3. At this
point, _raversefocusesitssearch for a solutionpath

to/32 in the subspace anchored at 84. This isaccom-

plishedby collapsingthe set of frontiernodes to the
singletonset {s4}.Such a collapsehas the effectofre-

quiringany solutionpath for/_ tostartinthesituation

terminating the satisfactorypath for/3z. Winnowing
the set ofpossibilitiesin thisway helpsto controlthe

projector'sseaxchby reducing the number of alterna-

tivesituationsinthe expanding searchfrontier.

We call this strategy cut-and-commit, and it is one
aspect of the algorithm's anytime operation. The con-
ditions under which this approach is advisable are dis-
cussed below.

2_raverse continues its search to satisfy/3 by find-
ing a projection path which satisfies/_ from 84. In
our figure, the eventual satisfactory path for /_ is
s4o4sso58soesv. This path is passed to the SCR com-
piler producing another set of SCRs for the satisfaction
of/_. The probability for the path 8z through 87 can
be calculated from p(8i+z[8i,oi), i - 1,...,6 (as de-
fined below). This number gives us a lower bound on
the probability that the reaction component will satisfy
/3. Assuming that there is still time before the reac-
tion component must take action, we can increase this
probability by finding additional paths which also sat-
isfy/3. Each additional path will serve to increase the
lower bound on the reaction component's probability
of satisfying/_.

Robustif# is our algorithm for finding additional pro-
jection paths. The algorithm finds high-probability de-
viations from the single existing solution path and calls

traverseto find alternativepaths which recoverfrom
each deviation.A deviationisa transitionin a situa-

tionwhich produces a new situationfrom which there

does not yet exista satisfactorypath. For example,

when robustif# is applied to the path 81ozs2o283o3s4,
it finds that the transition to ss via operator 07 has a
high probability of occurring in 82. Traverse is used

to recover from this deviation by synthesizing an alter-
nate path, B10182078808s90984, which also satisfies/31.
Similaxily, robus_if_ finds that the transition from ss
to szo via ozo has high probability and calls traverse to
synthesize the path 8404ssozoszoozzseoe8v. Each ad-
ditional path serves to increase the probability that
/_ will be satisfied by increasing the probability that
each of its component constraints,/_1 and/_, will be
satisfied.

Situated Control Rules are compiled for each new
subpath synthesized by traverse; in our example, new
SCRs are created for s2, as, sg, as, and szo. This incre-
mental deviate-and-recover strategy is another aspect
of the algorithm's anytime operation. As each new
path is found, SCRs are given to the reaction com-
ponent to help it deal with ever more of the possible
domain situations in which it might find itself.

Controlling the Search

Situation probability and estimated remaining work
were used in _raverse to define a heuristic evalua-

tion function. The heuristic value for a situation 8,
with respect to a BC/_, is computed as: h (s,/9) -
K1 .p(s) + K2. rwt(8,/3),where p(s) isthe probability

ofsituation8 and rwt (s,/9)isthe estimated remaining
work requiredto satisfy/_from s. The user-provided

weights,K1 and K2, determine the relativeimportance
oflow-costand high-probabilityin the computation of

h and, hence,affectthe type ofsolutionssynthesizedby

traverse. These parameters must be tuned as required
for each domain of application. This section gives def-



,-_(,, (and/_l .•. _.))
,'_(_, (ort_l ... _.))
_,, (,_,ain_ain¢ ,. ,',))
,',_(,, (pre,,ent ¢ _'. ,'.))
rw(s, (maintain ¢ _o_o))
,_(,, (pre,en_ ¢ _, _o))

= E:'=_"_',_')
= min_=_,'_(,,O,)
= KW-min-t,',,e (¢, s). (_'_-- ,-.) + _i,-faU_ (¢, ,). (cw + KW"(,'_-- _',))
= KW-,,,in-_,',,_(¢,,). (,'_ - _-.) + _in-faL,e (¢, ,). (cw + KW.(,-o- ,-.))
= KW._in-t,',,_ (¢, _) + cw. _in-fa_ (¢, _)
= KW.rain-true (¢, s) + CW.rain-false (¢, 8)

Table 1: Definition of rw(s,/_)

initions for estimated remaining work and path proba-
bility, and more clearly explains the role of behavioral
constraint strategies in controlling search.

Estimated remaining work

For planners concerned only with conjunctive goals of
achievement, a heuristic based on situation difference
gives reasonable results (Nilsson, 1980); to handle be-
havioral constraints we have generalized the notion of
situation difference to that of remaining work per time.

Our heuristic uses two global parameters, KW (keep
work) and cw (change work), which relate predicate
truth value to work. The parameter KW denotes the
minimum work per unit time to keep the truth value
of a predicate constant. The parameter cw denotes
the minimum number of work units required to change
the truth value of a predicate. We assume that facts
change instantaneously and cw estimates the mini-
mum work required to change the truth value of a
randomly selected predicate. A user must set these
parameters as required for each application domain.

We define the remaining work per time rurt (s, fl) to
be rw (s,fl)/rt (s,/9); where rw (8,/_) is the remaining
work necessary to satisfy/3 from s and rt (s,/3) is the
remaining time in which to do the work. The remain-
ing time can be easily estimated from/3 and s. Let
s be a situation, and let rn be the time stamp of s.
The numerator of our equation, rw (s, fl), can then be
defined as shown in table 1.

The function min-true( ¢, s) gives the minimum
number of predicates in the formula ¢ that are true in
situation s. Similarly, rain-false(C, s) gives the mini-
mum number of false predicates. These terms, together
with cw and KW, produce an optimistic estimate of the
amount of remaining work•

For example, consider the evaluation of ru(s,
(maintain ¢ 1-, re)). The formula ¢ must be main-
rained from time point r0 through time point re, from
situation s with time stamp I",. The appropriate defi-
nition in table 1 has two terms: the first term describes

the work required to keep the minimum number of true
predicates in ¢ true from rn through Te; the second
term deals with the work required to change the min-
imum number of false predicates in ¢ to be true, and
the work required to keep these predicates true from
r, through re. The classical situation difference heuris-
tic is a degenerate form of these measures, where work

is measured in the number of predicates that must be
made true and where there is no cost for keeping pred-
icates true over time.

Goal Satisfaction Probability

Our description of traverse depended on the ability to
combine individual transition probabilities into aggre-
gate projection path probabilities; this section explains
how this is accomplished.

Let G = (S, T) be a projection graph, where S is a
set of possible situations and T is a set of situation-
to-situation transitions; let s E S be a particular sit-
uation, and let w = sxols_o2...on-is, be a path
in G. The path probability of w is defined to be the
product of the transition probabilities in w: p (w) =

p (sl) .-I•rr_=1p (si+xIs_,oi).
For a situation s, the situation probability is defined

as the sum of the path probabilities of all paths from
the unique starting situation of G, ss, to s: p (s) =

Ep(w) summed over {w: w = SlOX...o,-xs, isa
path in G, sx = ss, and s, = s}.

Finally, we can define the probability that a behav-
ioral constraint,/3, is satisfied by a projection graph,
G, as the sum of the probabilities of all paths in G
anchored at the unique starting situation ss which
satisfy /): p (fllG) = _p (w) summed over
{w : w = SlOl...o_-ls_ is a path in G, sx = ss,
and w satisfies /3}.

The probability that the reaction component will
satisfy a BC/3 under the guidance of the SCP, a com-
piled from a projection graph G is bounded below by
p (a Ia). The probability p (/3 [ G) is a lower bound
because the reaction component might have access to
other SCRs relevant to/3 which cover situations that
are not in G.

Behavioral Constraint Strategies

As mentioned above, a behavioral constraint strategy
is a partial order over a set of behavioral constraints.
A given BC strategy controls search by giving the pro-
jector a set of behavioral constraints to satisfy and an
order in which to satisfy them. A BC strategy is satis-
fied when each of its component constraints is satisfied
in an order consistent with the given partial order.

To make this idea more precise, let (F, -<) be a BC
strategy, where I' contains n behavioral constraints; let
O be the set of all total orders over F compatible with



-_. Theobjectivefor _raverse is to synthesize a path
to = w 1 o to 2 o ... o w", such that there exists a total
order 0 E O where for each w i, w i+l in w, there exists

-._/_' E 6 such that w _ satisfies _ and wi+1 satisfies

ft. Furthermore, each _ E F must be satisfied by one
w i in to. The %" operator represents path composition

• I I I !
defined as follows: w o to' = stot82o2 • • • s, ets2e 2 • .. sj,
where w = 31018202 • si and to' = ' ' ' ' '•. slets2e2.., sj, if
the union of si and s_ is consistent, else w o w _ is un-
defined.

Consider the simple example used above where the
BC strategy is _t "_ /32. In the ideal case, for each
path w t that satisfies _1, there exists a path w 2 that
satisfies _2 such that w 1 o w 2. In this case, our cut-
and-commit strategy will never he forced to backtrack
over the first solution found for/_1, and the policy of
immediate SCR compilation is risk-free. However, it is
not always possible to construct such ideal BC strate-
gies. More typically only a subset of the paths which
satisfy/3t can be extended to also satisfy F_2. In this
case, the projector might have to backtrack to find an-
other solution to/_1. If such backtracking occurs, then
(at least some of) the SCRs that were compiled from a
rejected solution to _1 are not appropriate in the con-
text of _1 -_ _. However, they may be appropriate
in the context of another BC strategy and hence could
still prove useful•

In this paper, we do not address what the reactor
does when more than one SCR is applicable. This
issue is part of our current research effort; we are de-
veloping a SCR conflict resolution strategy based on
the BC strategy context for which an SCR is appro-
priate in combination with the transition probability
and the remaining work estimates associated with an
SCR. In our ongoing research on the interaction be-
tween the projector and the automatic production of
behavioral constraint strategies, one future topic will
be techniques for assessing and reducing the risk of
backtracking over the inter-behavioral constraint "cut"
points.

Discussion

A triangle table (Fikes et al., 1972) is analogous to
what you get after running traverse only once, a uni-
versal plan (Schoppers, 1987) is analogous to what you
get by doing exhaustive search of the space of possible
domain situations. A triangle table is like a set of SCl_
designed to deal with each situation in a sequence of
situations, and a universal plan is like a set of SCIts
which has 100% coverage of the space of situations.
Ginsberg (1989) has argued against the practicality of
universal plans. He has suggested that for "cognitive
tasks", a system should be able to enhance its perfor-
mance by expending additional mental resources. Our
projection algorithm does exactly this. Under our ap-
proach, additional computation time serves to increase
the probability of goal satisfaction.

There are various architectures addressing the real-
time embedded control problem• Representative ap-
proaches include Brooks' (1985) 8ubsumption architec-
ture, Nilsson's action nets (Nilsson, et al., 1990), Maes'

(1990) spreading activation approach, and the situ-
ated automata of Rosenschein and Kaelbling (Rosen-
schein, 1989; Rosenschein & Kaelbling 1986; Kaclbling,
1987a,b, 1988). Each of these approaches gives a de-
signer a language and methodology for specifying a
control system.

Brooks' (1985) subsumption architecture provides an
elegant way of organizing the functional components of
an embedded control system. The subsumption archi-
tecture "model" of embedded execution is richer than

our simple IF-THEN Situated Control Rule view. How-
ever, we are able to synthesize SCRs autorr_tically
from a given behavioral constraint and causal theory
describing a particular application domain. To our
knowledge, Brooks has not yet addressed the auto-
matic synthesis of subsumption architecture instances.

Nilsson's action nets (Nilsson, et al., 1990) provide
another methodology and language for the description
of embedded systems. Nilsson's view of closed-loop
homeostatic servo mechanisms is appealing, and early
results are promising. Our work differs in providing
a more expressive language of behavioral constraints
and by using information about situation probability
to control search.

Maes' (1990) system employs a spreading activa-
tion approach for dynamic action selection and can
be viewed as a form of on-line action synthesis. The
behavior of Maes' algorithm depends on a number of
global parameters which are set by the user based on
(among other factors) characteristics of the environ-
ment and the specific goal to be achieved. Hence, if
the nature of the environment changes or if the desired
goal changes, the user will need to re-tune the param-
eters. Our work differs by explicitly searching through
the space of possible futures. A behavioral constraint
is one of the algorithm's inputs; hence, changes in the
system's goals are taken into account automatically.
Changes in the nature of the environment would be re-
flected in the transition probabilities; hence, updated
probabilities would appropriately influence the projec-
tion search.*

The most closely related work is that of Rosen-
sehein and Kaelbling (Rosenschein, 1989; Rosenschein
& Kaelbling 1986; Kaelbling, 1987a,b, 1988). Kael-
bling's GAPPS system is a compiler which translates
goal reduction expressions into directly executable cir-
cuits. However, a person writing GAPPS goal reduc-
tions must essentially do their own temporal projec-
tion; that is, it is the person's responsibility to guar-
antee that the rules, once sequenced, will "lead to" goal
satisfaction. In contrast, our approach defines a tem-
poral projection mechanism which sorts out the effects

"We have not yet implemented the automatic update of
transition probabilities.



of variousactionsequencesautomatically. Of course,
we potentiallypay a greatercomputational costby car-

rying out thissearch. Additionally,the GAPPS sys-

tem, and the REX language on which itisbased,have

a great deal to say about bounded reaction time in
terms of the circuitssynthesizedfrom higher-levelex-

pressions.We are not currentlyaddressingthisissue.

We stressthe syntheticnature of our projectorto

distinguishitfrom analyticprojection(Dean /z Mc-

Dermott, 1987;Hanks, 1990).An analyticprojectoris
used by a planner to validateplans while a synthetic

projectorcombines operator selectionand validation

inthe same algorithm.The analytic/syntheticdistinc-

tionislargelyone ofperspective,sinceitispossibleto

view a planner-analyticprojectorpair as a complete

system which performs syntheticprojection.

Hanks (1990) greatlyextended the capabilitiesof

temporal projectionsystems by adding informationre-

garding probability.Dean and Kanazawa (1988) also

use similarinformation. The techniques of Hanks,

Dean and Kanazawa can be used to judge the prob-
abilitythat a given fact willbe true at an arbitrary

point in the future. We can imagine providing such

an inferentialfacility,but for now, we permit only cal-

culationsof individualsituationprobability.The al-

gorithms of Hanks, Dean and Kanazawa can perform
more powerful inferences.

Dean and Boddy (1988) have characterizedan any-
time algorithm as one which can be asked for an answer
at any point, where the algorithm's answers are ex-
pected to improve the longer it is allowed to run. Our
use of traverse and robustif_ satisfy this characteriza-
tion, in the sense that a set of SCRs is available for
the reactor at any point in time, and in the sense that
the set of SCRs "improves" over time by incremen-
tally increasing goal satisfaction probability. We have
identified two ways in which a synthetic temporal pro-
jection algorithm can be considered "anytime": first,
by using our cut-and-commit search strategy based on
behavioral constraint strategies; and second, by recur-
sively employing our devlate-and-recover strategy to
manage probable errors.

Our cut-and-commit approach ameliorates the com-
plexity of the projection search. To see this, suppose
that the average branching factor in the projection is b,
and suppose that an eventual solution path is of length
n. This means that breadth-first search would have to

project, in the worst case, bn+x - 2 many situations
to find a successful path. Suppose that the projector's
BC strategy is totally ordered and is of length c. In
the worst case, the number of situations that traverse
must project is c. b(n/c)+x -2c. As c approaches n, the
number of situations we must consider falls off dramat-

ically. This assumes, of course, that no backtracking
occurs. As c increases, the projection takes on the
shape of a series of small trees connected end-to-end,
rather than one large tree running from start to finish.
The larger c is, the smaller the computation's anytime

"grainsize"becomes.

We have designed and implemented a simulator

for an experimental domain calledthe Reactive Tile

World. The Reactive Tile World exhibitsexogenous
eventsand temporally extended goalsof maintenance

and prevention.We are in the processof empirically

validatingour projectionalgorithm on a suiteofReac-
tiveTileWorld testproblems.
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Appendix A: Behavioral Constraint
Syntax and Semantics

A behavioral constraint(BC) is an expression con-
structedaccording to the followinggrammar. We use

the symbol/3 to stand for an arbitraryBC and the

symbol Ito indicatealternatives.

/_ -. (and Zx_2 .../_,) I (or #1/_ ..- _,)
--. (maintain ¢ _ _2) I (prevent ¢ _, _2)

t3 ---* (maintain ¢ _ _) I (prevent ¢ _o _)
¢ --, (and ¢1 ¢2... ¢,) I (or ¢1 ¢2... ¢,)
¢ --* predicate

We use ¢ to denote a formula, r to denote a time

point constant, and _oto denote a time point vari-

able. Time points are natural numbers. A vari-
able is indicated by a question-mark, for instance:

?t. All variablesare implicitlyexistentiallyquanti-

fied. We currentlyuse time point variablesonly to
expressthose goalsof "achievement" or "destruction"

which are not required to occur at a predetermined

point in time;these goalsare given the followingsyn-
tacticforms: (maintain ¢ _ _) = (achieve ¢ _) and
(prevent ¢ _ _) =_ (destroy ¢ _o).

Behavioral constraint semantics are defined in terms

of projection graph paths. Let w = s I o1 s2 o2 ... on- as_
be a projection graph path; let ts (s) denote the time
stamp of situation s; and let fl be a behavioral con-
straint. Then w satisfies fl under the following condi-
tions.



_o _ (and_ ...t_.)
iff Vie{1...n}: w_/3i
_ (or _x ... _.)
iff 3ie{1...n}: w_/3i

w _ (maintain xb rx "rz)
iff 3s_ e w : ts (s_) < rx and s_ _ ¢

and Vsj E w, j > i :
sj _¢or ts(sj)>r2

w _ (prevent ¢ rx r2)
iff 3s_w: ts(s_)<rxands_ ¢

and Yss E w, j > i :

w _ (maintain _b _o _o)
iff 3si _w: si _¢

w _ (r_event ¢ _ _)
iff 3si 6 w : si _ ¢

s _ (and ¢_ ...¢.)
i_ vie {1...n}: s _ ¢,

s _ (or Cx ... ¢.)

s _ predicate
iff predicate E s
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